ENMA: Tokenwise Autoregression for Generative Neural PDE Operators

Armand Kassaï Koupaï, Lise Le Boudec, Louis Serrano, Patrick Gallinari

TLDR; We propose to solve parametric PDEs using a continuous autoregressive generative model operating in a compressed latent space.

code

page

paper

1.Problem formulation

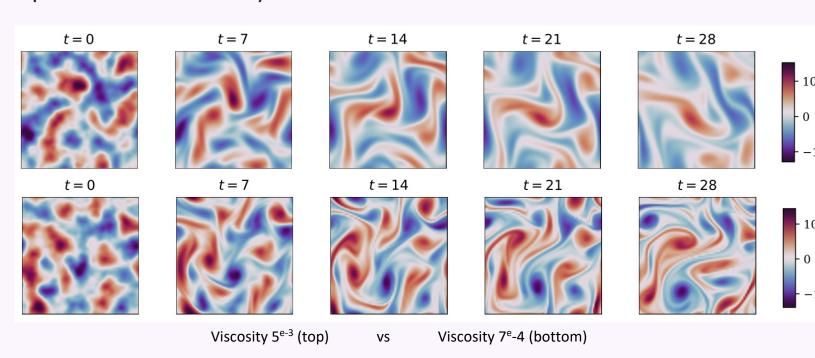
Solve parametric PDEs

$$\mathcal{N}[u;c,f](x,t) = 0, \qquad for (x,t) \in \Omega \times (0,T]$$

$$\mathcal{B}[u;b](x,t) = 0, \qquad for (x,t) \in \partial \Omega \times (0,T]$$

$$u(x,0) = u^{0}(x), \qquad for x \in \Omega$$

Where \mathcal{N} and \mathcal{B} denote differential operators, Ω is the spatial domain and T is the time horizon. c refers to the PDE parameters, f is the forcing term, b represents the boundary conditions and u^0 is the initial condition.

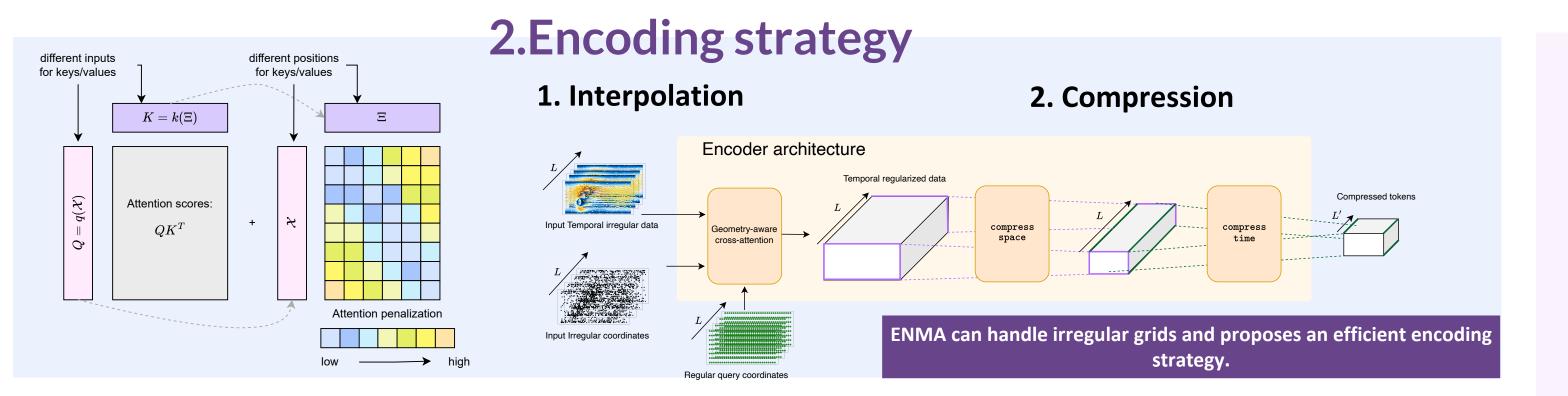


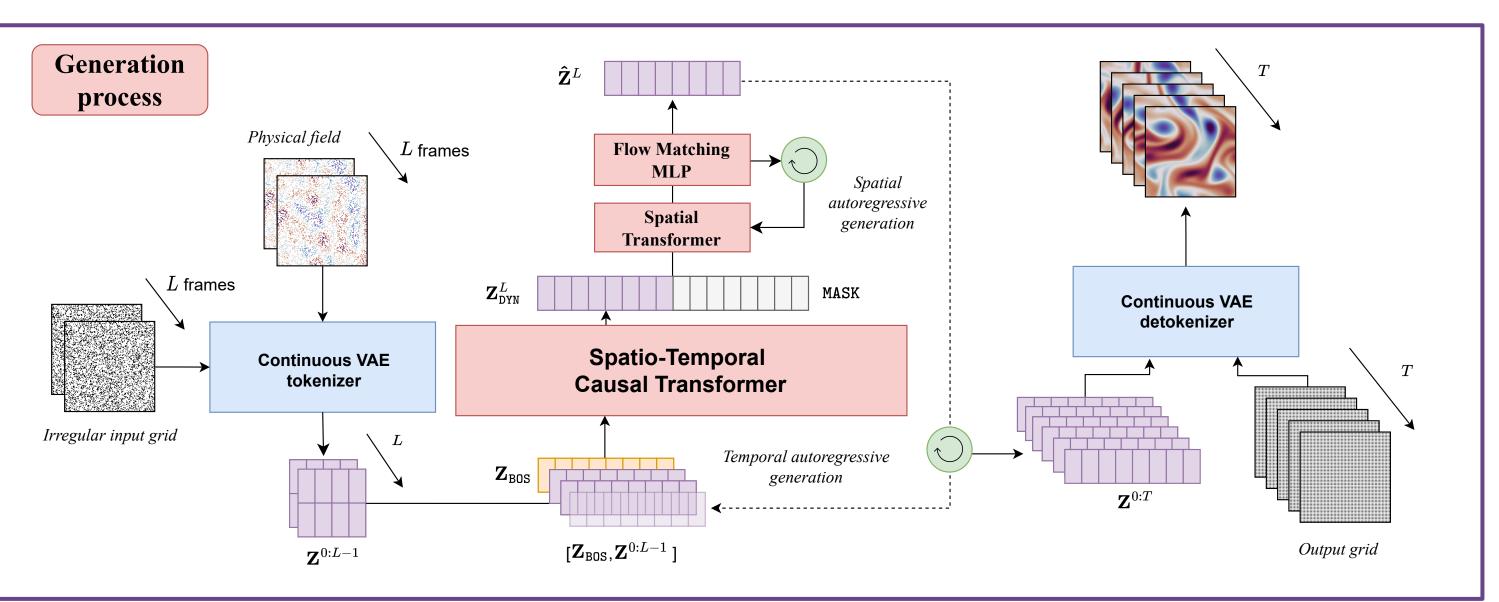
• 3 properties

Robust to changes in the initial conditions

Robust to changes in the discretization grid

Robust to changes in the PDE parameters





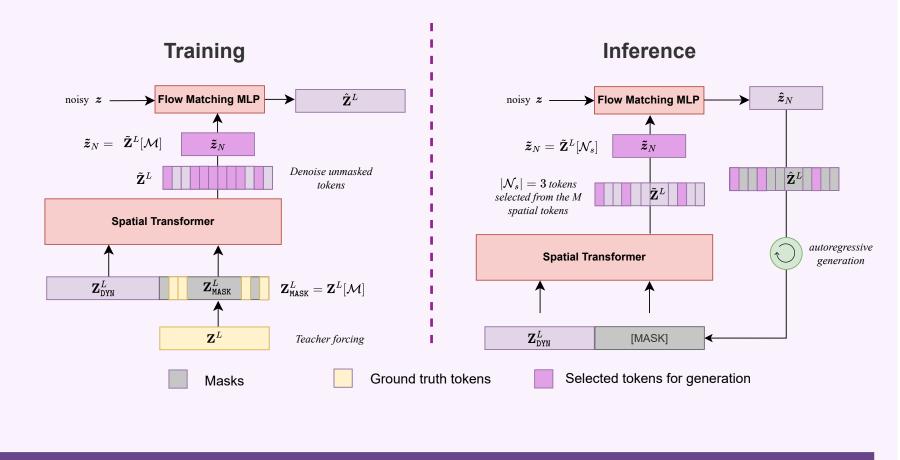
3. Generative process

1. Extract spatio-temporal representation

spatio-temporal representation of a trajectory by using a attention mechanism Z_{DVN}^{L} = CausalTransformer(Z_{BOS} , $Z^{0:L-1}$), where Z_{ROS} is a learned begin-of-sequence token. Z_{DYN}^L can be seen as a latent context capturing the dynamics, from the observed time-steps [0,L-1], to predict the

2. Auto-regressive spatial

 Z_{DVN}^{L} . This is implemented using a spatial transformer, combined with a lightweight MLP that models the per-token ouput distribution.



ENMA is a generative autoregressive model that operates continuously in the latent space.

4.Experiments

1. Encoder-Decoder quality

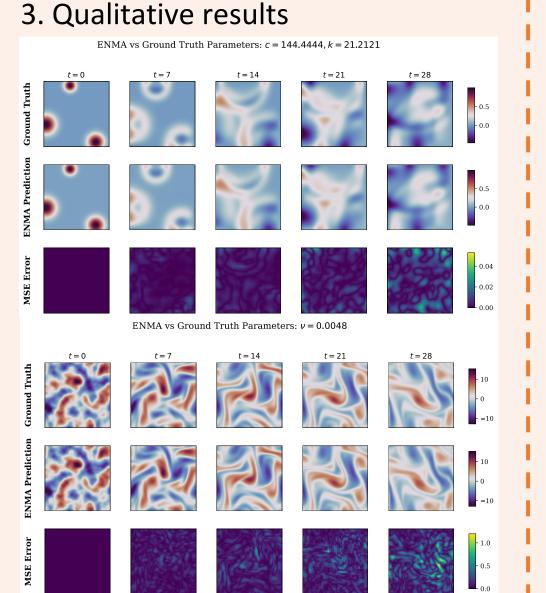
$\downarrow \mathcal{X}_{\mathrm{te}}$	$Dataset \rightarrow$	Vorticity					
¥ 00	Model ↓	Reconstruction	Time-stepping	Compression rate			
	OFormer	9.99e-1	1.00	×0.125			
$\pi=100\%$	GINO	5.63e-1	9.83e-1	×8			
	AROMA	<u>1.45e-1</u>	1.13	×8			
	CORAL	4.50e-1	9.85e-1	$\times 2$			
	ENMA	9.20e-2	2.62e-1	$\times 15$			
$\pi=50\%$	OFormer	9.99e-1	1.00	-			
	GINO	5.69e-1	9.91e-1	-			
	AROMA	<u>1.64e-1</u>	1.14	-			
	CORAL	4.93e-1	<u>9.85e-1</u>	-			
	ENMA	9.90e-2	2.68e-1	-			
	OFormer	9.99e-1	1.00	-			
$\pi=20\%$	GINO	5.90e-1	1.04	-			
	AROMA	2.29e-1	1.14	-			
	CORAL	7.59e-1	9.87e-1	-			
	ENMA	1.37e-1	3.11e-1				

ENMA can encode and decode at any resolution

2. Generative process to solve PDEs

Setting ↓	$\textbf{Dataset} \rightarrow$	Combined		Gray-Scott		Wave			
Seems 4	Model ↓	In-D	Out-D	In-D	Out-D	In-D	Out-D		
Temporal Conditioning	FNO	0.133	26.634	0.0504	0.192	0.691	2.643		
	BCAT	0.268	0.928	0.0374	0.1571	0.219	0.538		
	AVIT	0.0567	0.305	0.0426	0.168	0.157	0.588		
	AR-DiT	0.295	1.797	0.369	0.499	1.117	7.522		
	Zebra	0.0182	2.197	0.0421	0.182	0.140	0.315		
	ENMA	0.00786	0.102	0.034	0.144	<u>0.145</u>	0.489		
	In-Context ViT	0.579	1.364	0.069	0.194	0.172	0.624		
Initial Value Dueblan	[CLS] ViT	0.096	1.160	0.048	0.219	0.556	1.021		
Initial Value Problem	Zebra	0.0478	0.963	0.044	0.1218	0.169	0.352		
	ENMA	0.0156	0.330	0.048	0.134	0.154	<u>0.502</u>		
Table 2: Comparison of ENMA and baselines on 2 tasks.									

ENMA demonstrates strong performance on various difficult benchmarks



4. Generative capabilities of ENMA

Model	$\mathbf{FPD}\downarrow$	Precision ↑	Recall ↑	
Zebra	1.03×10^{-1}	0.77	0.86	
ENMA (ours)	9.50×10^{-3}	0.79	0.78	

Table 3: Generative metrics on the Combined dataset. Lower FPD and higher Precision/Recall indicate better quality and diversity

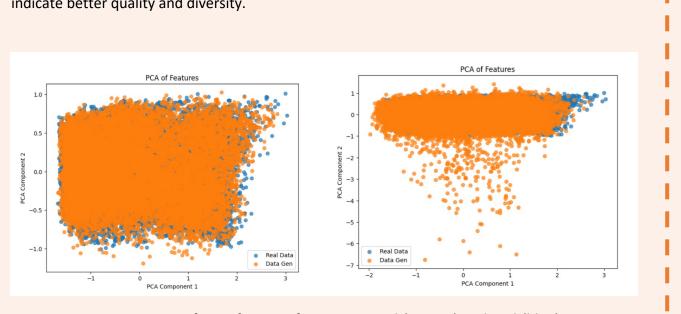


Figure 1: PCA projections of CNN features from generated (orange) and real (blue) trajectories at the final timestep with ENMA (left) and Zebra (right).

5 Uncertainty quantification with ENMA

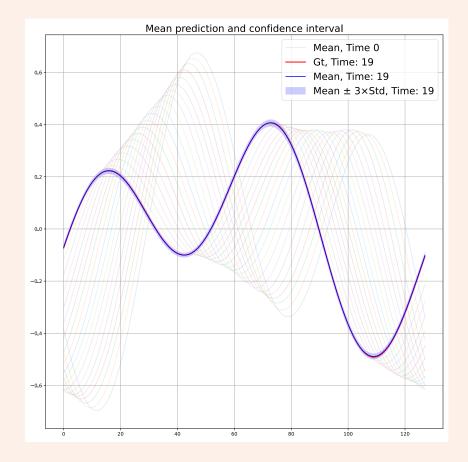


Figure 2: Uncertainty quantification using ENMA. Multiple trajectories are sampled, and the final time step is used to compute the pointwise mean (blue), standard deviation (shaded), and ground truth (red).